WHAT? I CANNOT DOUBLE A CUBE?

One of the all-time problems that puzzle people is why mathematicians say that a cube cannot be doubled. Well, the truth is that the problem is unsolvable only under some specific restrictions.
Algebraically, this is equivalent to finding the solution for x in the equation $x^{3}=2 a^{3}$ for a cube of side a, but if we make $a=1$, the equation is reduced to $x^{3}=2$. Therefore, the duplication of the cube is equivalent to finding the cubic root of 2 , i.e. $\sqrt[3]{2}$.

What are those construction restrictions? Only two:

- You must use drawing compass and straightedge only.
- The straightedge cannot be marked; that is, only pure geometric constructions are allowed, no measurements. This problem -called the Delian problem- dates back to old Greece, originated by architectural needs.

Drawing a rectangular triangle of unit sides we obtain that the area of the square of the hypotenuse is double in size as the area upon the unit squares.

To double a cube, our first try is to double the base and the height of the original cube, but what we obtain is another cube 8 times the initial volume.

Geometrically, with straightedge and compass we can double a line segment, and we can double square. Thus, the number 2 and $\sqrt{2}$ are constructible numbers. However, it has been proven that $\sqrt[3]{2}$ is not constructible, no matter the efforts we make.

The cube to the right has twofold volume as the cube at left.

Doubling a cube

Pierre Laurent Wantzel (1814-
1848) proved that many geometrical problems are unsolvable if using only unruled compass and straightedge.

1.2599210498948731 647672106072782 ... $\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2}=2$

All compass and straightedge constructions consist of five basic
 constructions of points, lines, and circles:

- a line through two points, - creating the point which is the intersection of two non-parallel lines, • a circle through one point with centre at another point, • creating the points of intersection of a line and a circle. \bullet creating the points of intersection of two circles.

